Vis enkel innførsel

dc.contributor.authorKallesten, Emanuela Iedidia
dc.contributor.authorAndersen, Pål Østebø
dc.contributor.authorMadland, Merete Vadla
dc.contributor.authorKorsnes, Reidar Inge
dc.contributor.authorOmdal, Edvard
dc.contributor.authorZimmermann, Udo
dc.date.accessioned2021-05-06T07:09:47Z
dc.date.available2021-05-06T07:09:47Z
dc.date.created2020-04-10T14:26:17Z
dc.date.issued2020-04
dc.identifier.citationKallesten, E.I., Andersen, P.Ø., Madland, M.V. et al. (2020) Permeability evolution of shear failing chalk cores under thermochemical influence. ACS Omega, 5, 9185-9195.en_US
dc.identifier.issn2470-1343
dc.identifier.urihttps://hdl.handle.net/11250/2753787
dc.description.abstractDevelopment of petroleum reservoirs, including primary depletion of the pore pressure and repressurization during water injection naturally, leads to changes in effective stresses of the formations. These changes impose mechanical deformation of the rock mass with subsequent altering of its petrophysical properties. Besides mechanical compaction, chalk reservoirs on the Norwegian Continental Shelf also seem susceptible to mineralogical and textural changes as an effect of the injecting fluid’s chemical composition and temperature. Understanding such chemical and thermal effects and how they interplay with the mechanical response to changes in effective stresses could contribute to improved prediction of permeability development during field life. This article presents results from mechanical testing of chalk cores of medium-porosity (32%) outcrop chalk (Niobrara Formation, Kansas) in triaxial cells. The experimental setup allows systematic combinations of fluctuating deviatoric stress, temperature (50 and 130 °C), and injecting fluid (calcite-equilibrated sodium chloride, calcite-equilibrated sodium sulfate, and reactive synthetic seawater) intended to replicate in situ processes, relevant to the North Sea chalk reservoirs. Deviatoric loading above yield resulted in a shear failure with a steeply dipping fracture of the core and a simultaneous increase in permeability. This occurred regardless of the brine composition. The second and third deviatoric loadings above yield did not have the same strong effect on permeability. During creep and unloading, the permeability changes were minor such that the end permeability remained higher than the initial values. However, sodium sulfate-injected cores retained most of the permeability gain after shear fracturing compared to sodium chloride and synthetic seawater series at both temperatures. Synthetic seawater-injected cores registered the most permeability loss compared to the other brines at 130 °C. The results indicate that repulsive forces generated by sulfate adsorption contribute to maintain the fracture permeability.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePermeability evolution of shear failing chalk cores under thermochemical influenceen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 American Chemical Societyen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440en_US
dc.source.pagenumber9185-9195en_US
dc.source.volume5en_US
dc.source.journalACS Omegaen_US
dc.identifier.doi10.1021/acsomega.9b04470
dc.identifier.cristin1805815
dc.relation.projectNorges forskningsråd: 230303en_US
cristin.ispublishedfalse
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal