Vis enkel innførsel

dc.contributor.authorBratvold, Reidar Brumer
dc.contributor.authorTadjer, Amine
dc.date.accessioned2021-06-08T08:08:43Z
dc.date.available2021-06-08T08:08:43Z
dc.date.created2021-05-25T17:15:01Z
dc.date.issued2021-03
dc.identifier.citationTadjer, A., Bratvold, R.B. (2021) Managing Uncertainty in Geological CO2 Storage Using Bayesian Evidential Learning. Energies, 14(6), 1557en_US
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/2758439
dc.description.abstractCarbon capture and storage (CCS) has been increasingly looking like a promising strategy to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe and successful, an efficient monitoring program that will prevent storage reservoir leakage and drinking water contamination in groundwater aquifers must be implemented. However, geologic CO2 sequestration (GCS) sites are not completely certain about the geological properties, which makes it difficult to predict the behavior of the injected gases, CO2 brine leakage rates through wellbores, and CO2 plume migration. Significant effort is required to observe how CO2 behaves in reservoirs. A key question is: Will the CO2 injection and storage behave as expected, and can we anticipate leakages? History matching of reservoir models can mitigate uncertainty towards a predictive strategy. It could prove challenging to develop a set of history matching models that preserve geological realism. A new Bayesian evidential learning (BEL) protocol for uncertainty quantification was released through literature, as an alternative to the model-space inversion in the history-matching approach. Consequently, an ensemble of previous geological models was developed using a prior distribution’s Monte Carlo simulation, followed by direct forecasting (DF) for joint uncertainty quantification. The goal of this work is to use prior models to identify a statistical relationship between data prediction, ensemble models, and data variables, without any explicit model inversion. The paper also introduces a new DF implementation using an ensemble smoother and shows that the new implementation can make the computation more robust than the standard method. The Utsira saline aquifer west of Norway is used to exemplify BEL’s ability to predict the CO2 mass and leakages and improve decision support regarding CO2 storage projects.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectkarbonfangsten_US
dc.subjectkarbonlagringen_US
dc.subjectParis-avtalenen_US
dc.titleManaging Uncertainty in Geological CO2 Storage Using Bayesian Evidential Learningen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 by the authorsen_US
dc.subject.nsiVDP::Teknologi: 500::Berg‑ og petroleumsfag: 510::Geoteknikk: 513en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Petroleumsgeologi og -geofysikk: 464en_US
dc.source.volume14en_US
dc.source.journalEnergiesen_US
dc.source.issue6en_US
dc.identifier.doi10.3390/en14061557
dc.identifier.cristin1911778
dc.source.articlenumber1557en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal