Vis enkel innførsel

dc.contributor.advisorRatnayake Mudiyanselage, Chandima
dc.contributor.authorMamoon Ul Hassan, Mamoon Ul Hassan
dc.date.accessioned2022-09-28T15:51:22Z
dc.date.available2022-09-28T15:51:22Z
dc.date.issued2022
dc.identifierno.uis:inspera:102983723:64551638
dc.identifier.urihttps://hdl.handle.net/11250/3022358
dc.description.abstractThe blades of offshore wind farms (OWTs) are susceptible to a wide variety of diverse sources of damage. Internal impacts are caused primarily by structure deterioration, so even though outer consequences are the consequence of harsh marine ecosystems. We examine condition-based maintenance (CBM) for a multiblade OWT system that is exposed to environmental shocks in this work. In recent years, there has been a significant rise in the number of wind turbines operating offshore that make use of CBMs. The gearbox, generator, and drive train all have their own vibration-based monitoring systems, which form most of their foundation. For the blades, drive train, tower, and foundation, a cost analysis of the various widely viable CBM systems as well as their individual prices has been done. The purpose of this article is to investigate the potential benefits that may result from using these supplementary systems in the maintenance strategy. Along with providing a theoretical foundation, this article reviews the previous research that has been conducted on CBM of OWT blades. Utilizing the data collected from condition monitoring, an artificial neural network is employed to provide predictions on the remaining life. For the purpose of assessing and forecasting the cost and efficacy of CBM, a simple tool that is based on artificial neural networks (ANN) has been developed. A CBM technique that is well-established and is based on data from condition monitoring is used to reduce cost of maintenance. This can be accomplished by reducing malfunctions, cutting down on service interruption, and reducing the number of unnecessary maintenance works. In MATLAB, an ANN is used to research both the failure replacement cost and the preventative maintenance cost. In addition to this, a technique for optimization is carried out to gain the optimal threshold values. There is a significant opportunity to save costs by improving how choices are made on maintenance to make the operations more cost-effective. In this research, a technique to optimizing CBM program for elements whose deterioration may be characterized according to the level of damage that it has sustained is presented. The strategy may be used for maintenance that is based on inspections as well as maintenance that is based on online condition monitoring systems.
dc.description.abstract
dc.languageeng
dc.publisheruis
dc.titleCondition-based maintenance of wind turbine blades
dc.typeMaster thesis


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

  • Studentoppgaver (TN-IKM / TN-IMBM) [1213]
    Master- og bacheloroppgaver i Konstruksjoner og materialer / Maskin, bygg og materialteknologi (maskinkonstruksjoner, byggkonstruksjoner og energiteknologi) / Masteroppgaver i Offshore teknologi: industriell teknologi og driftsledelse - Offshore technology: industrial Asset management / Masteroppgaver i Offshoreteknologi : offshore systemer (konstruksjonsteknikk og marin- og undervannsteknologi-subsea technology)

Vis enkel innførsel