Vis enkel innførsel

dc.contributor.authorLiu, Shengnan
dc.contributor.authorGatin, Inno
dc.contributor.authorObhrai, Charlotte
dc.contributor.authorOng, Muk Chen
dc.contributor.authorJasak, Hrvoje
dc.date.accessioned2023-02-01T13:11:27Z
dc.date.available2023-02-01T13:11:27Z
dc.date.created2019-11-28T14:40:25Z
dc.date.issued2019
dc.identifier.citationLiu, S., Gatin, I., Obhrai, C., Ong, M. C., & Jasak, H. (2019). CFD simulations of violent breaking wave impacts on a vertical wall using a two-phase compressible solver. Coastal Engineering, 154, 103564.en_US
dc.identifier.issn0378-3839
dc.identifier.urihttps://hdl.handle.net/11250/3047747
dc.description.abstractFour different types of breaking wave impacts on a vertical wall are simulated using a two-dimensional two-phase Computational Fluid Dynamic (CFD) model. Air is considered as an isentropic ideal gas without solving an additional energy equation and water is treated as an incompressible liquid. The discontinuity in fluid properties across the free surface is treated using the Ghost Fluid Method, which accounts for the jump in density and compressibility. The numerical results are compared with large-scale experimental data for five cases in terms of surface elevations, total forces and pressure distributions along the wall, and a reasonable agreement is obtained overall. The characteristics of impact pressures under different breaking wave conditions are discussed and compared to each other. The two largest total forces on the wall occur in the ‘flip-through’ and ‘large air pocket’ cases. The peak pressure of the flip-through impact is localized in both time and space. The pressure within the trapped air pocket is nearly uniform with a smaller peak value and a much longer duration than that of the ‘flip-through’ case. The compression and expansion of the air pocket results in pressure oscillations, which are overestimated in frequency and amplitude due to the inaccuracy in capturing the air escape. The broken wave case has the smallest total force, but the largest local pressure among the present numerical cases, which demonstrates the necessity to study all different impact types.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCFD simulations of violent breaking wave impacts on a vertical wall using a two-phase compressible solveren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe authorsen_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.pagenumber1-22en_US
dc.source.volume154en_US
dc.source.journalCoastal Engineeringen_US
dc.identifier.doi10.1016/j.coastaleng.2019.103564
dc.identifier.cristin1753908
dc.relation.projectNotur/NorStore: NN9372Ken_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal