Vis enkel innførsel

dc.contributor.authorSingh, Deepak
dc.contributor.authorFriis, Helmer André
dc.contributor.authorJettestuen, Espen
dc.contributor.authorHelland, Johan Olav
dc.date.accessioned2023-04-03T10:45:18Z
dc.date.available2023-04-03T10:45:18Z
dc.date.created2022-11-02T12:48:17Z
dc.date.issued2022
dc.identifier.citationSingh, D., Friis, H.A., Jettestuen, E., & Helland, J.O. (2022). A level set approach to Ostwald ripening of trapped gas bubbles in porous media. Transport in Porous Media, 145, 441 - 474.en_US
dc.identifier.issn0169-3913
dc.identifier.urihttps://hdl.handle.net/11250/3061770
dc.description.abstractOstwald ripening of gas bubbles is a thermodynamic process for mass transfer, which is important for both foam enhanced oil recovery and geological CO2 storage. We present a methodology for simulating Ostwald ripening of gas ganglia surrounded by liquid in arbitrary pore geometries. The method couples a conservative level set model for capillary-controlled displacement and a ghost-bubble technique that calculates mass transfer based on difference in chemical potentials. The methodology is implemented in a software framework for parallel computations. As a validation of the model, we show that simulations of bubble ripening in a pore throat connecting two pore bodies are consistent with previously reported trends in similar geometries. Then we investigate the impact of gas type, compressibility factor, and local capillary pressure on gas-bubble ripening in various water-wet pore geometries. The results confirm that gas solubility and compressibility factor are proportional to the rate of mass transfer. Our simulations suggest that Ostwald ripening has largest impact in heterogeneous or fractured porous structures where differences in gas-bubble potentials are high. However, if the liquid separating the gas bubbles is also a disconnected phase, which can happen in intermediate-wet porous media, the resulting local capillary pressure can limit the coarsening and stabilise smaller bubbles. Finally, we simulated Ostwald ripening on a 3-D pore-space image of sandstone containing a residual gas/water configuration after imbibition. Characterization of gas-bubble morphology during the coarsening shows that large ganglia get more ramified at the expense of small spherical ganglia that cease to exist.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.urihttps://doi.org/10.6084/m9.figshare.19918687.v1
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA level set approach to Ostwald ripening of trapped gas bubbles in porous mediaen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe authorsen_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.pagenumber441-474en_US
dc.source.volume145en_US
dc.source.journalTransport in Porous Mediaen_US
dc.identifier.doi10.1007/s11242-022-01859-4
dc.identifier.cristin2067965
dc.relation.projectNorges forskningsråd: 294886en_US
dc.relation.projectSigma2: nn9380ken_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal