Vis enkel innførsel

dc.contributor.authorKelland, Malcolm Andrew
dc.contributor.authorDirdal, Erik Gisle
dc.contributor.authorRee, Lilian Helene Strand
dc.date.accessioned2023-05-24T13:09:28Z
dc.date.available2023-05-24T13:09:28Z
dc.date.created2020-10-05T16:12:33Z
dc.date.issued2020
dc.identifier.citationKelland, M. A., Dirdal, E. G., & Ree, L. H. (2020). Solvent Synergists for Improved Kinetic Hydrate Inhibitor Performance of Poly (N-vinylcaprolactam). Energy & Fuels, 34(2), 1653-1663.en_US
dc.identifier.issn0887-0624
dc.identifier.urihttps://hdl.handle.net/11250/3068854
dc.description.abstractThe synergetic effect of a range of different solvents on the kinetic hydrate inhibitor (KHI) performance of poly(N-vinylcaprolactam) (PVCap) has been investigated. The equipment used was a high-pressure (76 bar) rocking cell apparatus using slow constant cooling (approximately 1 °C/h from 20.5 °C) and a synthetic natural gas mixture forming structure II hydrate. The synergetic effect was investigated by adding 5000 ppm of a range of alcohols, glycol ethers, and ketones to a solution of 2500 ppm of PVCap (Mw = 10 000 g/mol). For many of the additives, the ranking of the synergetic effect can be explained with reference to the size, shape, and hydrophobicity of the main alkyl group (“tail”) in the molecule as well as the presence of a glycol ether group. Among all of the solvents investigated, the best synergetic effect was achieved by 4-methyl-1-pentanol. When 5000 ppm of 4-methyl-1-pentanol was added to 2500 ppm of PVCap, no hydrate formation occurred down to the minimum test temperature of 3 °C (subcooling at ca. 16.3 °C) in 15 parallel experiments compared to 10.4 °C for pure PVCap. Predictions for improved glycol ether synergists are given.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSolvent Synergists for Improved Kinetic Hydrate Inhibitor Performance of Poly(N-vinylcaprolactam)en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe authorsen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440en_US
dc.source.pagenumber1653-1663en_US
dc.source.volume34en_US
dc.source.journalEnergy & Fuelsen_US
dc.source.issue2en_US
dc.identifier.doi10.1021/acs.energyfuels.9b03994
dc.identifier.cristin1837253
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal