Vis enkel innførsel

dc.contributor.authorHo, Quoc Duy
dc.contributor.authorRauls, Eva
dc.date.accessioned2023-10-24T12:59:17Z
dc.date.available2023-10-24T12:59:17Z
dc.date.created2023-08-14T11:13:36Z
dc.date.issued2023-08
dc.identifier.citationHo, Q.D., Rauls, E. (2023) Cavity Size Effects on the Adsorption of CO2 on Pillar[n]arene Structures: A Density Functional Theory Study. ChemistrySelect, 8(29), e202302266en_US
dc.identifier.issn2365-6549
dc.identifier.urihttps://hdl.handle.net/11250/3098448
dc.description.abstractCarbon dioxide (CO2) is the main greenhouse gas that contributes to the global warming. Therefore, CO2 adsorption is very urgent in the fight to limit global warming below 1.5 degrees Celsius. In this report, the interaction between CO2 with different structures of pillar[n]arene (P[n]A) is studied by using DFTB and DFT calculations, in order to understand the effect of P[n]A (with n=4, 5, and 6) cavity sizes on CO2 adsorption. The P[n]A structures physisorb CO2 at three principally different positions called cavity-in, top-in, and top-out. The adsorbed CO2-cavity-in at P[4]A has the highest binding energy. The adsorbed CO2 at the other positions has similar binding energies on P[4]A, P[5]A, and P[6]A, because hydrogen bonding plays a major role for the interaction at the hydroxyl group. The number of CO2 molecules that can be adsorbed at the cavity site depends on the cavity size of P[n]A. The bigger the cavity site, the larger the number of CO2 molecules that can be adsorbed before saturation is achieved. We also observed that the adsorbed CO2 molecules can interact with each other, leading to an increase of the binding energy and highlighting the promising CO2 capture capabilities of P[n]A structures.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sons Ltd.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectkjemien_US
dc.titleCavity Size Effects on the Adsorption of CO2 on Pillar[n]arene Structures: A Density Functional Theory Studyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440en_US
dc.source.volume8en_US
dc.source.journalChemistrySelecten_US
dc.source.issue29en_US
dc.identifier.doi10.1002/slct.202302266
dc.identifier.cristin2166681
dc.source.articlenumbere202302266en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal