Vis enkel innførsel

dc.contributor.advisorMikkelsen, Ove
dc.contributor.authorHartveit-Schee, Eirik
dc.date.accessioned2018-09-12T11:43:16Z
dc.date.available2018-09-12T11:43:16Z
dc.date.issued2018-06
dc.identifier.urihttp://hdl.handle.net/11250/2562225
dc.descriptionMaster's thesis in Structural engineeringnb_NO
dc.description.abstractTopology optimization is an important tool for conceptual design of products. Finite element based topology optimization formulations, such as the Solid Isometric Material with Penalization (SIMP), have proved to be a solid algorithm for finding optimized geometries and have become widely implemented in commercial Computer Assisted Design (CAD) software. When topology optimization is viewed in conjunction with additive manufacturing (3D-printing), because of it's increased shape forming capabilities, highly optimized parts can be achieved. Technologies for 3D-printing large, metallic, load bearing structures is still in early development, but shows great promise, like the Wire Arc Additive Manufacturing (WAAM) method. These methods display advantages in other areas, such as material effciency and fast deposition rate, that differentiate them from other, established 3D-printing methods. Topology optimization was used to develop two conceptual designs of reduced volume compared to original component, which was an end truck of a over head crane system developed by T. Kverneland & Sønner AS (TKS). One design intended for traditional manufacture and one intended for additive manufacture. Both proposed designs showed Von Mises stress above yield strength at certain areas of the model. Sharp corners and narrow radii of hole pro les were the main reason for this. Also, for the additive manufacture design, thin members were observed with high stress values. Designs could be improved by round-off of sharp corners, increasing radii of hole profiles and increasing thickness of thin members. It is believed that viable design can be achieved without drastic changes to the designs proposed in this thesis. Proposed design for traditional and additive manufacturing have a volume reduction of 17% and 14% respectfully relative to volume of original component.nb_NO
dc.language.isoengnb_NO
dc.publisherUniversity of Stavanger, Norwaynb_NO
dc.relation.ispartofseriesMasteroppgave/UIS-TN-IMBM/2018;
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectmaterialteknologinb_NO
dc.subjectbyggkonstruksjonnb_NO
dc.subjecttopology optimizationnb_NO
dc.subjectSIMPnb_NO
dc.subjectcranenb_NO
dc.subjectWAAMnb_NO
dc.subjectadditive manufacturingnb_NO
dc.subjectFE analysisnb_NO
dc.titleTopology optimization of crane componentnb_NO
dc.typeMaster thesisnb_NO
dc.subject.nsiVDP::Teknologi: 500::Bygningsfag: 530::Konstruksjonsteknologi: 533nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

  • Studentoppgaver (TN-IKM / TN-IMBM) [1213]
    Master- og bacheloroppgaver i Konstruksjoner og materialer / Maskin, bygg og materialteknologi (maskinkonstruksjoner, byggkonstruksjoner og energiteknologi) / Masteroppgaver i Offshore teknologi: industriell teknologi og driftsledelse - Offshore technology: industrial Asset management / Masteroppgaver i Offshoreteknologi : offshore systemer (konstruksjonsteknikk og marin- og undervannsteknologi-subsea technology)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal