• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Universitetet i Stavanger
  • Faculty of Science and Technology
  • Department of Mathematics and Physics (TN-IMF)
  • Studentoppgaver (TN-IMF)
  • View Item
  •   Home
  • Universitetet i Stavanger
  • Faculty of Science and Technology
  • Department of Mathematics and Physics (TN-IMF)
  • Studentoppgaver (TN-IMF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algebraens fundamentalteorem

Østebø, Marlene Seljeskog
Bachelor thesis
Thumbnail
View/Open
no.uis:inspera:79011930:37362312.pdf (444.4Kb)
URI
https://hdl.handle.net/11250/2774260
Date
2021
Metadata
Show full item record
Collections
  • Studentoppgaver (TN-IMF) [52]
Abstract
Denne bacheloroppgaven tar utgangspunkt i Algebraens fundamentalteorem og polynomlikningens historie. Algebraens fundamentalteorem sier at hver polynomlikning av grad n med komplekse koeffisienter har minst én kompleks rot, og ble først formulert av Albert Girard i 1629. Siden ble det omformulert og bevist av Gauss i 1799. Oppgaven vil presentere historien om de forskjellige polynomlikningene, fra løsningen av andre-, tredje-, og fjerdegradslikningen, og frem til Abels teorem om at den generelle femtegradslikningen ikke kan løses ved hjelp av de algebraiske operasjonene addisjon, subtraksjon, multiplikasjon, divisjon, og røtter. Videre blir kompleks analyse og analytiske funksjoner definert, før jeg gir tre analytiske bevis for algebraens fundamentalteorem.
 
This Bachelor's thesis is based on the Fundamental Theorem of Algebra and the history of polynomial equations. The Fundamental theorem of Algebra states that every polynomial equation of degree n, with complex coefficients, has at least one complex root, and was first presented by Albert Girard in 1629. Since then it has been presented several times, before it was proved by Gauss in 1799. The thesis will include the history of polynomial equations, from the solving of equations of second, third and fourth degree to Abel's theorem: the general polynomial equation of fifth degree can not be solved through the algebraic operations; addition, subtraction, multiplication, division and roots. In the second part of the thesis, complex analysis and analytical functions will be presented and defined, before I will give three analytical proofs for the Fundamental Theorem of Algebra.
 
Publisher
uis

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit